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The stability of natural convective flow in a porous medium heated bothuniformly 
and non-uniformly from below is studied in order to determine the possibility of 
oscillatory and other unsteady flows, and to explore the conditions under which 
they may occur. The results of the numerical work are directly comparable with 
experiments using a Hele Shaw cell and also, in the uniformly heated case, with 
the results of Combarnous & Le Fur (1969) and Caltagirone, Cloupeau & Combar- 
nous (1971). It is shown that for the uniformly heated problem there exist, in 
certain cases, two distinct possible modes of flow, one of which is fluctuating, 
the other being steady. However in the non-uniformly heated case the boundary 
conditions force the solution into a unique mode of flow which is regularly oscil- 
latory when there is considerable non-uniformity in the heat input a t  the lower 
boundary, provided that the Rayleigh number is sufficiently high. 

1. Introduction 
The convective flow of fluid through a permeable material has received con- 

siderable attention since the early analyses by Horton & Rogers (1945) and 
Lapwood (1948). The studies of Wooding (1956), Donaldson (1962), Elder 
(1966a, 1967b), Chan, Ivey & Barry (1970), Holst & Aziz (1972a,b) and Palm, 
Weber & Kvernvold (1973) all led to analyses of this type of flow which indicated 
that steady-state flow patterns evolved from the initially motionless system and 
remained unvarying for all subsequent times; Gill (1969) has shown using per- 
turbation analysis that, for an initially uniform horizontal temperature gradient, 
this must be so. 

During preliminary experiments a t  the University of Auckland, with a Hele 
Shaw cell to simulate free convection of fluid in a porous medium, it was noticed 
that under certain conditions the flow became oscillatory. The simple fluid loop 
considered by Keller (1966), in which periodic oscillations can occur, suggests 
a possible mechanism for this process. Further, Elder (1966b) noticed ‘curious 
results’ in numerical solutions for flows in cavit’ies. These were in the form of 
secondary flows and he speculated that they may have been caused by distur- 
bances inherent in the numerical method exciting other modes of the system. 
Recently oscillatory convection in il fluid layer has been described very fully by 
Moore & Weiss (1973). Also, unsteady flows in porous media have been obtained 
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by Combarnous & Le Fur (1969) and Caltagirone et ul. (1971), who discovered 
irregular fluctuations in an experimental flow when the lower boundary was pre- 
sumed to be uniformly heated and the Rayleigh number was larger than a critical 
value which lies in the range 240-280 depending on the type of porous medium. 
The present investigation verifies the existence of both regular and irregular 
fluctuations in convective flow in a porous medium heated from below, determines 
their nature and considers the processes which may cause them. 

The study of incompressible flow through a porous matrix is of particular 
practical interest in relation to the use of geothermally heated steam as a source 
of electrical power, for example the Wairakei power scheme in New Zealand. 
Clearly the possible presence of transiency in such a useful natural resource is 
significant, and it is for this reason that an attempt is made here to obtain a better 
understanding of these effects. Since the Wairakei system has been observed 
for only a short time (on a geophysical time scale), the existence of regular oscilla- 
tions of low frequency may not have become apparent. Unfortunately, since 
details of the deep physical system are unknown, it is impossible to perform a 
quantitative simulation of the flow patterns which exist there. Thus our inten- 
tion is to generate a flow in a theoretical model and thereby obtain a more general 
and purely qualitative impression of the phenomenon, although it may be 
possible to gain some insight as to its magnitude and the observable effects which 
it may have. 

The convection of fluid in a porous medium is also of interest since it is one of 
the simplest systems exhibiting nonlinear instability. 

2. The prototype problem 
The Wairakei geothermal area consists of a trough of volcanic debris contained 

by walls of non-fragmented ignimbrite; thus the model region considered is a long 
trough of isotropically porous material confined by impermeable and insulating 
surroundings. The region is considered to be sufficiently long to allow the govern- 
ing equations to be reduced to two spatial dimensions only, thus resulting in a 
very worthwhile simplification of their solution. Heat is transported through the 
region by free convection of the incompressible fluid which completely saturates 
the medium, or by thermal conduction through the material itself. I n  the physical 
system, heat is transferred away from a localized high temperature region caused 
by magmatic intrusion deep below ground and on reaching the earth’s surface 
produces hydrothermal effects such as steaming ground, fumaroles and hot 
springs. Elder ( 1 9 6 6 ~ )  suggests that geophysical data indicate that the Wairakei 
area is a ‘ wet-convector ’ in that the medium is completely saturated with liquid 
and the heating surface is horizontal. It is considered unnecessary to model 
two-phase flow since, although there exist periodic two-phase disturbances at the 
surface of geothermal systems, for example geysers and hot lakes, these pheno- 
mena are shallow compared with the deep system which is of interest here. 

The model region considered is infinitely long, of rectangular cross-section, 
heated unevenly along its lower surface and insulated on both vertical surfaces 
(see figure 1). In  the calculations carried out here, a square cross-section is used; 
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FIGURE 1. Problem boundaries. 

however, no loss of generality in the qualitative effects is expected to result from 
this simplification (see Donaldson 1962). 

A portion OD of the lower boundary, representing the heat source, is raised 
uniformly to a higher temperature TI, and the remainder DC is maintained a t  a 
lower temperature To. At the upper boundary heat is lost at a rate proportional 
to the difference between the ground and air temperatures in the physical sys- 
tem but, since the convective heat loss coefficient is so much larger than that for 
conductive heat loss, this temperature difference must be small to maintain a 
balance between the two types of heat transfer, and therefore it is satisfactory to 
employ a simpler boundary condition, maintaining the surface uniformly at  the 
lower temperature To. 

3. Governing equations 
The motion of the fluid in the region is characterized by the velocity field 

U ( X ,  y, t )  = (4x9 y, t ) ,  v(x,  y, t ) ,  O ) ,  

which is governed by the non-dimensional equations 

and 

V2$ = -8, 

V28 = 8, -+ Ra($, e),  
where the stream function $ is defined by 

= h(a/KR)u, $-y = - h(a/KR) v (3.3) 

and the Jacobian operator a($, 8 )  = $k-8x-$x81-. Here R is the Rayleigh 

where K is the thermal diffusivity of the fluid-filled medium, k is the permeability 
of the medium, a is the coeEcient of thermal expansion of tjhe fluid, 1' is t'he 
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kinematic viscosity of the fluid and h is the ratio of the volumetric heat capacity 
of the fluid to  the volumetric heat capacity of the saturated medium. The non- 
dimensional space, temperature and time variables are defined respectively by 

X Y T - To K 
7 = - t .  3=-, y = - ,  0 = -  

a a TI - To’ a2 

The derivation of these equations is well known (see, for example, Wooding 
1956; Torrance 1968; Katto & Masuoka 1967). It should be noted that the Bous- 
sinesq approximation, that density variations are only significant in their 
generation of buoyancy forces, has been invoked and also that inertia forces have 
been ignored. This last assumption can only be made if the Reynolds number for 
the flow is small. 

The Rayleigh number R determines the nature of the flow, which changes 
from stationary conduction when R < 4n2 (Lapwood 1948) to vigorous convec- 
tion at higher values. It is anticipated that in geothermal regions R lies between 
lo3 and lo4; an estimated value for the Wairakei system is 5000. The present 
investigation considers values of the Rayleigh number between 0 and 1250, since 
i t  will be seen later that it is within this range that the transitions from pure con- 
duction to steady convection and from steady to oscillatory convection occur. 

I n  the model described above, the boundary conditions on 8 and $ are given 

I 1 0, f < X < l ,  

I ,  O < X < f ,  
B(X, 0,7) = 

B(X, IJ) = 0, I 
0,(0, P,7) = Ox(1, Y,7) = 0,  

( 3 . 4 ~ )  

(3 .4b )  

and $(X, I’, 7 )  = 0 on all boundaries. (3.5) 

The problem for which f = 1 is well known (e.g. Donaldson 1962) and may be 
solved approximately by using a semi-analytical approach. For example, the 
spectral method described in Schechter (1 967, p. 272) may be used and provides 
a useful basis for comparison with the more widely applicable methods which 
are used in this work. This uniformly heated case was considered during this 
investigation in order to check the accuracy of the numerical algorithms which 
were used to  generate solutions to the non-uniformly heated case (f < I ) ,  which 
were more likely to be susceptible to numerical instabilities because of the higher 
gradients involved. I n  particular, a Galerkin (Fourier) technique similar to that 
described by Orszag (1971) was applied as a check on the finite-difference scheme. 

The transient behaviour of similar types of flow has been studied previously 
by Elder (1967 b )  and more recently by Holst & Aziz (1972a, b )  but in no case were 
oscillatory solutions found. The investigation by Elder (19676) is of particular 
interest since his equations are the same as those used here and the boundary 
conditions are similar. The methods used by the above authors in approximating 
the heat flow equation are susceptible to nonlinear instability (discussed later) 
and are not satisfactory for high values of the Rayleigh number, say R > 200. 
For the solution of the Poisson equation Holst & Aziz (1972a, b )  and Elder 
(1966b, 1967a, b )  use the successive over-relaxation method, which although 
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accurate is an iterative and therefore comparatively slow procedure. However 
the numerical methods used in the present work (a combination of the methods 
devised by Arakawa 1966 and by Busbee, Golub & Nielsen 1970) were not avail- 
able a t  that time and it is largely the remarkable efficiency, accuracy and stability 
of the methods used here which has enabled the achievement of the long-time 
solutions which are necessary before the oscillatory solution can be identified. 
It is interesting to note that the numerical experiments of Moore & Weiss (1973) 
superseded the results of Fromm (1965) and Veronis (1966) in the description of a 
hitherto undiscovered oscillatory regime, largely because of the extensive and 
efficient numerical experiments performed. Moore & Weiss (1973) quote com- 
puting times of 5 h on an IBM 360144 to perform 4000 time steps of their numerical 
procedure; we were more fortunate in that our problem is much simpler and 
typical runs of 1500 time steps took 15min on a Burroughs B 6700. 

Steady-state solutions have been obtained by Elder (1966a, 1967a) to this 
and very similar problems, but to obtain such a state it was previously assumed 
that the solution was in fact steady. As Elder ( 1 9 6 7 ~ )  points out, instabilities in 
the flow ca,nnot be studied by assuming that the temperature field is quasi- 
steady. 

The studies of Caltagirone et ul. (1971) and Combarnous & Le Fur (1969) in- 
dicate possible unsteady flows for the uniformly heated case, but our investiga- 
tion indicates that an unsteady regime may also be affected by the size f of the 
heating element. 

A fractional value off destroys the symmetry which is so useful in the consider- 
ation of the uniformly heated model, and it is imperative in this case to resort to 
experimental or numerical methods to obtain a solution. Perturbation analysis 
is no longer possible, and a simulation of the flow development in time must be 
performed to determine the stability of the solution. In  the sections following, 
two possible approximate methods of solution are applied: experimental analogy 
and finite-difference approximation. 

4. Experimental solution 
The use of a Hele Shaw cell provides a simple analogy with two-dimensional 

flow through a porous medium (see, for example, Wooding 1960). It is well known 
(see Yih (1969), p. 382) that the mean flow in a Hele Shaw cell with plate separa- 
tion b is analogous to the mean two-dimensional seepage flow through a material 
with permeability k = &b2. The two systems are not strictly thermally analogous 
as heat is inevitably lost to the surroundings through the glass plates of the 
Hele Shaw cell, and also the heat transfer between the solid and liquid phases is 
somewhat different to the porous-medium case. However, using an infra-red 
' thermovision ' camera we found that the mean temperature through the thick- 
nesses of the glass and the water is approximately analogous to the mean 
temperature a t  a point in a fluid-saturated porous medium, as reported by Calta- 
girone et al. (1971). The fact that the plates are not completely insulated means 
that the analogy is not complete; however the experiment is useful for indicating 
essential features of the flow. 
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Using a Hele Shaw cell 30 x 20 cm, a solution similar to the flow in a porous 
medium at a Rayleigh number of 1600 was generated. The flow of water in the cell 
was made visible by the injection of dye through small holes in one of the plates, 
generating strealdines which, owing to the very slow speed of the flow, were un- 
fortunately rather diffuse. The half-heated lower boundary (i.e. f = 0.5) was 
achieved by placing a copper heating jacket along the left half of the bottom of 
the cell and passing water at 40 “C through it a t  a constant rate for the duration 
of the experiment. The remaining half of the boundary was similarly cooled. The 
upper boundarywas a free surface, thereby maintaining, first, the low temperature 
boundary condition by heat loss to the air space, second, the zero normal velocity 
condition and, third, the constant volume of the system. 

After a long period of time, the flow displays a behaviour which is regularly 
oscillat,ory, periodically generating ‘tongues ’ of fluid in the descending and 
ascending regions of the flow. These tongues may be best seen by observing the 
prominent triangular streakline in the lower left of figure 2 (a )  (plate 1). In  figure 
2 ( b )  the triangle is depressed a t  the top as the descending tongue begins to de- 
velop and impressed a t  the bottom as the ascending tongue forms over the heater. 
The triangle is further distorted in figure 2(c) as the descending disturbance 
moves across and down, while the ascending tongue, now quite prominent, moves 
across the heater towards the left-hand boundary. I n  figures 2 ( d )  and ( e )  the 
upper tongue continues its downward flight while the lower one reaches the left- 
hand boundary and begins to elongate. Finally, in figure 2 (f) the ascending dis- 
turbance has shot rapidly up the left boundary and the descending one has been 
completely dissipated. At this time the flow is a t  the same stage as in figure 2 (a).  

The period of this oscillation was 900s in the experiment, which corresponds 
to a non-dimensional period of 0-003. 

We have also modelled t,he uniformly heated case in the Hele Shaw cell; 
however experimental work on the uniformly heated model has already been 
reported by Combarnous & Le Fur (1969) and Caltagirone et al. (1971) and its 
description is not repeated here. 

5. Numerical solution 
The finite-difference solutions of (3.1) and (3.2) have been of some interest in 

numerical analysis and fluid mechanics because of the difficulty in representing 
them satisfactorily in difference form. Torrance (1968) gives a summary of 
several methods, both explicit and implicit, with special consideration of the 
parabolic equation describing the transport of temperature (equation (3.2) in 
this case). The main difficulty in solving this equation in finite-difference form 
arises in the representation of the term 

which is generally known as the advection term (see Crowley 1967). Arakawa 
( 1966) has explained that simple finite-difference approximations using central 
differences, for example 

J = $l-ox-q+eIr, (5.1) 
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where +i,j = $(iAX,jA Y, T ) ,  8i,j = O(iAX’,jAY,T) 

and AX and A Y are spatial increments, cause numerical instability owing to the 
occurrence of aliasing errors or ‘noodling’. Such errors arise because the approxi- 
mation (5.2) does not conserve the kinetic energy of the system. TO avoid aliasing 
errors Arakawa (1966) developed nine- and thirteen-point representations of J 
which conserve this quantity and which have a truncation error of the order of 
the square and fourth power respectively of the spatial difference A X  (these 
schemes are accordingly known as the second- and fourth-order Arakawa schemes). 
Unfortunately both the nine- and thirteen-point templates make implementation 
difficult as an implicit scheme and so an explicit scheme is usually used. Because 
of the simple shape of the region and the simple boundary conditions, the 
numerical solution of the elliptic stream-function equation is much easier to 
achieve. I n  this work we use tlhe odd-even reduction method described by 
Busbee et al. (1970), which is a non-iterative scheme for the solution of Poisson’s 
equation on a finite mesh of points. The algorithm is extremely fast but rather 
elaborate and therefore is not described further here. 

Thus the finite-difference form of the equations, using forward differencing in 
time, becomes 

and 

(5.3) 

(5.4) 

where the [V2+Jz and [V2O]cj are evaluated using the standard five-point formula 
and the advection term J t  is evaluated using the fourth-order thirteen-point 
Arakawa template. 

Substitution of the boundary conditions is easily achieved in the solution of 
(5.4) by direct substitution on the horizontal boundaries and the use of the 
symmetry of temperatures about the vertical boundaries (on which the normal 
temperature gradient is zero). The large number of points in the fourth-order 
Arakawa representation and the use of this image method result in an accurate 
boundary representation. 

We used the fourth-order method in preference to the second-order version 
because it is the advection term in (5.4) which is dominant in the production of 
both numerical and physical disturbances. Obviously this term is the most im- 
portant in this investigation and must be represented as precisely as possible, 
besides which the fourth-order method is only slightly slower in its computer 
implementation. Unfortunately it is not possible to apply the thirteen-point 
template right up to the horizontal boundaries, so for points lying one row in 
from these boundaries the nine-point template must be used. 

6. Fluctuating flows 
Uniformly heated boundary 

Following the initial checks on the applicability of the numerical scheme to 
simple cases, by comparison with a Fourier transform method, a set of solutions 
to the uniformly heated problem was generated to obtain a representation of the 
fluctuating convective state observed by Combarnous & Le Fur (1969) and 
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R 

50 
250 
375 
500 
750 

1000 
1250 

Mesh size 

17 x 17 
17 x 17 
17 x 17 
17 x 17 
17 x 17 
33 x 33 
33 x 33 

Fluctuation timet Motion observed 
- Minimal 
- Steady 

0.0316 Fluctuating 
0*0200 Fluctuating 
0.0102 Fluctuating 
0.0076 Fluctuating 
0.0070 Fluctuating 

t The fluctuation time is a characteristic time taken as the interval between two consecu- 
tive similar fluctuations (whenever they may occur). 

TABLE 1. Summary of results forf = 1.0 

Caltagirone et al. (1971). Beginning the solution a t  time r = 0 with the initial 
conditions that the fluid is everywhere stationary and the lower boundary 
suddenly raised to a temperature 8 = 1, we found that, in contradiction to the 
results of the authors just mentioned, the flows are multicellular and stable to 
the small round-off perturbation inherent in the computer a t  all Rayleigh num- 
bers between 50 and 1250. However, by heating the lower boundary slowly a t  
first, so that a unicellular motion develops, and then more rapidly, a permanently 
unicellular motion is obtained which is unsteady a t  Rayleigh numbers larger 
than approximately 280, a figure which is in agreement with the range of values 
experimentally observed by Caltagirone et al. (1971). This unicellular motion 
also results if as well as very rapid initial heating an initial unicellular perturba- 
tion of the flow is introduced. 

At a Rayleigh number of 500, the Nusselt number for the steady tricellular 
mode is 7.8, whereas for the fluctuating state it varies in time with a mean value 
of 6.3 and a maximum of 7-0 (considered over a period in which four consecutive 
relative maxima appear). For steady convection in a porous layer with no re- 
straining side walls the cell width is dependent on the Rayleigh number (see 
Combarnous 1970; O’Sullivan 1974) with cell widths of 0.5, 0.33 and 0.25 cor- 
responding to Rayleigh numbers of 280,400 and 700 respectively. The fluctuating 
solutions exhibit the same generation and dispersion of an additional cell in the 
otherwise unicellular convective flow and are directly comparable with the pre- 
vious results of Caltagirone et al. (1971). However this behaviour is clearly unlike 
that observed in the Hele Shaw experiment in that it is not periodic; although 
two consecutive similar fluctuations may appear the solution is not generally 
regular. 

The results (summarized in table 1 )  of our simulations of this unstable regime, 
called by Bories & Combarnous (1973) the fluctuating convective state, suggest 
that, although the preferred multicellular mode of the system is stable and forms 
out of the multicellular proto sublayer observed by Elder (1968), it requires 
only a small initial unicellular perturbation or slow heating to drive it into the 
unsteady unicellular mode. This is borne out by the experimental solutions of 
Caltagirone et al. (1971), where obviously slight physical disturbances and slow 
experimental heating produced a similar effect. The fluctuations which later 
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f 
0.75 
0.75 
0.75 
0.75 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.25 
0.25 
0.25 
0-25 
0.25 
0.25 

R 
500 
750 
1000 
1250 
250 
375 
500 
500 
750 
1000 
1250 
250 
375 
500 
750 
1000 
1250 

Mesh size 

17 x 17 
33 x 33 
33 x 33 
33 x 33 
17 x 17 
17 x 17 
17 x 17 
33 x 33 
33 x 33 
33 x 33 
33 x 33 
17 x 17 
17 x 17 
17 x 17 
33 x 33 
33 x 33 
33 x 33 

0.0240 
0.0240 
0.0072 
0.0062 
0.0051 

-. 

0.0194 
0.0089 
0.0063 
0.0051 

Motion observed 

Steady 
Steady 
Steady 
Steady 
Steady 
Steady 
Oscillatory 
Oscillatory 
Oscillatory 
Oscillatory 
Oscillatory 
Steady 
Steady 
Oscillatory 
Oscillatory 
Oscillatory 
Oscillatory 

TABLE 2. Summary of results for f < 1.0 

appear arise from an attempt to resort to the more favoured steady multicellular 
pattern, which is repressed by the dominant circulation. However, once either 
the steady or the fluctuating state is well formed, it cannot easily be perturbed 
and changed completely into the opposite state. Introduction of large random 
variations in the temperature on the upper and lower boundaries did not effect 
a change in state. 

As will be seen in the following section, altering the length of the heating ele- 
ment affects the ‘unfavourability ’ of the single-celled mode, and solutions to the 
non-uniformly heated problem clarify the process involved here. 

Non-uniformly heated boundary 

To simulate the flow in the non-uniformly heated problem, solutions for values of 
f = 0.25, 0.5 and 0.75 were generated on a 17 x 17 mesh for 250 < R < 750 and 
on a 33 x 33 mesh for 750 < R < 1250, and exhibited the motions summarized 
in table 2. I n  some cases a completely regular oscillation with non-dimensional 
period 7p appeared. The progress of the solution through a single oscillation of 
such a flow is illustrated in figure 3, for which the flow is a t  a Rayleigh number 
of 750 with f = 0.5, was generated on a 33 x 33 mesh and is typical of all the other 
regular oscillatory solutions observed. The sequence is of four isotherm plots 
evenly spaced in time and begins at a stage analogous to figure 2 (b) for the Hele 
Shaw results. The variation of a typical temperature and of the Nusselt number 
is illustrated in figure 4 for the same flow for two oscillations. 

These oscillatory flows display the same moving ‘tongues’ as were observed 
in the experimental solution (figure 2) ; however, it should be remembered that 
the flow in the Hele Shaw eel1 was visualized by the injection of dye through small 
holes ; therefore the representation produced is of streaklines and is not directly 
comparable with the isotherms illustrated in figure 3. However the superposition 



348 R.  N .  Home and M .  J .  O’Xullivan 

(d 1 
FIGURE 3. Numerical solution for a Rayleigh number of 750 with f = 0-5, generated on 

a 33 x 33 mesh: plot of isotherms during a single oscillation. 
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FIGURE 4. Plot of typical temperature (solid line) and Nusselt number (broken line) WS. 
time for two oscillations of the flow in figure 3. Points (a)-(d)  correspond to figures 3 (a)-(@. 

of streamlines onto the computed isotherm plot (see figure 5) clearly shows the 
advection of the fluid ‘tongues ’, the streamlines and isotherms being almost per- 
pendicular in the vicinity (two cells have been placed adjacent to represent flow 
above a hot ‘island’). Particular attention is drawn to the displacement of the 
streamlines as a disturbance is generated. These displacements are degenerate 
forms of those observed in the fluctuating state (f = 1-0), where they act in opposi- 
tion to the dominant circulation and generate smaller reverse cells before dis- 
appearing again. 

The variation of the oscillation period r p  with the Rayleigh number R when 
f = 0.5 is plotted in figure 6 ,  alongside the plot of a representative fluctuation 
time for f = 1.0; the experimental solution appears as a single point on the same 
diagram. The value ofrp obtained in the experiment does not differ greatly from 
the value expected from a numerical simulation a t  the same Rayleigh number, 
the slight difference being of little significance since experimental 1 inaccuracies 
easily account for the discrepancy (in particular the exact start and finish of a 
particular oscillation is difficult to establish). 

The appearance of identical periodic solutions on 17 x 17 and on 33 x 33 meshes 
a t  the same Rayleigh number indicates that this behaviour is not merely the 
result of numerical disturbances ; thus the existence of the regular oscillatory 
solution previously predicted is confirmed. The results demonstrate that large- 
scale transiency is possible for non-uniform heat distributions a t  Rayleigh 
numbers greater than approximately 480 for f = 0.5 and 450 for f = 0.25. As was 
expected, the flow when f = 0.75 is steady for the values of the Rayleigh number 
simulated here, and the flow patterns quite different to the other solutions, being 
tricellular and not single celled (see figure 7).  This anomalous set of results is of 
great significance since, together with the results from the uniformly heated 
problem, it indicates the cause of the unsteadiness in the other flows. An un- 
heated length of boundary which is similar to the cell width for the steady flow 
a t  a particular Rayleigh number forces the favourable steady flow pattern to 
occur despite any outside perturbation, whereas other heater lengths reinforce 
the formation of the fluctuating flows of the uniform case and discipline the flow 
into regular oscillations. 

The presence of oscillations such as these in the Wairakei geothermal region 
would be difficult to establish since the real time constant would be of the order 
of 1000 years (assuming a depth of 5 km) and there are other complications, for 
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FIGURE 5. Plot of isotherms (solid lines) and streamlines (broken lines) 
for the flow of figure 3. 
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FIGURE 6. Plot of oscillation period T~ vs. Rayleigh number forf = 0.5, and representative 
fluctuation time forf = 1.0. @, experimental solution of figure 2. 

instance use of the steam bores and surface water regeneration, which we have 
ignored so far. The manifestation of oscillatory effects at ground level would be 
variations in the heat flux from the surface; this is illustrated by the Nusselt- 
numberltime plot in figure 4. 

I n  this work only two-dimensional flows have been considered. It is possible 
that transitions from two-dimensional rolls to three-dimensional modes may 
further complicate the problem. 



Oscillutory convection in u porous medium 351 

FIGURE 7. Plot of isotherms (solid lines) and streamlines (broken lines) for a 
flow at a Rayleigh number of 750 with f = 0.75. 

7. Conclusions 
When the lower boundary is heated slowly to a final temperature 8 = 1, the 

effect is the same as slowly increasing the Rayleigh number from a low value to 
the figure under investigation. Therefore, early in the development, a t  an effec- 
tively low Rayleigh number, a convective flow begins in the most favourable 
mode for that Rayleigh number, namely the unicellular mode. This mode then 
dominates the later development of the flow until fluctuations start to occur as 
the system attempts to form a more favourable mode. The same end result is 
produced by inducing the initial unicellular mode artificially. The appearance 
of the fluctuations, as has been suggested by Caltagirone et ul. (1971), is caused 
by an increase in the local Rayleigh number a t  the base of the descending column 
of the unicellular flow above the value at which a convection cell can appear in 
the small region where the temperature gradient is locally constant. Then an 
abnormally hot parcel of fluid begins to rise from the surface of the heater, and is 
moved further by the dominant circulation. A corresponding situation may occur 
at the upper boundary. As is clearly seen in figure 5 a cold parcel of fluid (indicated 
by the downward loop in the isotherms) descends more rapidly than its surround- 
ings (indicated by the closeness of the streamlines and their tendency towards 
the vertical) and preserves its anomalous character as it falls, dwindling slowly 
owing to thermal diffusion. However, the disturbance is not totally dissipated 
and on reaching the lower boundary triggers the appearance of the next ascending 
disturbance. In  the uniformly heated problem the position at  which the descend- 
ing disturbance arrives a t  the lower boundary is variable, thus accounting for the 
irregular form of the fluctuation; however in the non-uniform case it always 
arrives a t  the same place, over the right-hand end of the heater, and so the oscil- 
lations are completely regular. 

It is seen then that the type of unsteady motion of a fluid flowing through a 
region of porous material depends on how well the cell shape for steady motion 



352 R. N .  Home and M .  J .  O’Sullivan 

in an unbounded layer fits into the region’s boundaries. For Rayleigh numbers 
greater than 280 (where the steady-flow cell width is 0.5), there is a possibility of 
either a steady multicellular structure or a fluctuating unicellular structure. Once 
formed, these two structures are not easily interchangeable, but the system may 
be assisted into either mode by a suitable perturbation during its early develop- 
ment. If the lower boundary of the region is non-uniformly heated the system is 
self-restricting and is either stabilized into the steady multicellular flow or 
regularized into periodic oscillatory flow, depending on how much of the 
boundary is heated. 

Thus the natural convective regime of flow through a porous medium is greatly 
influenced both by the presence of vertical boundaries and by the type of bound- 
ary conditions employed. 
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( (1 )  255 rnin (h)  260 min 

Plate 1 

(c) 262 min 

( d )  263 min ( c )  265 rnin ( f  ) 270 rnin 

FIGURE 2.  Experirncntal solution for a Rayleigli number of  1600 witlif = 0.5: 
plot of  strcakliries during a single oscillation. 


